指数

定义

  • 指数

    m>1m>1为整数,aa是与mm互素的正整数,则使得ae1(modm)a^e\equiv1\left(\mod m\right)成立的最小正整数ee叫做aa对模mm的指数,记作ordm(a)\mathrm{ord}_{m}{\left(a\right)}

  • 原根

    e=φ(m)e=\varphi{\left(m\right)},则aa为模mm的原根

定理

  • ad1(modm)ordm(a)da^d\equiv1\left(\mod m\right)\Longleftrightarrow\mathrm{ord}_{m}{\left(a\right)}\mid d

  • pp为奇素数,p12\frac{p-1}{2}为素数,若a≢0,1,1(modp)a\not\equiv0,1,-1\left(\mod p\right),则ordp(a)=p12\mathrm{ord}_{p}{\left(a\right)}=\frac{p-1}{2}p1p-1

  • ba(modm)ordm(b)=ordm(a)b\equiv a\left(\mod m\right)\Longrightarrow \mathrm{ord}_{m}{\left(b\right)}=\mathrm{ord}_{m}{\left(a\right)}

  • a1a1(modm)ordm(a1)=ordm(a)a^{-1}a\equiv1\left(\mod m\right)\Longrightarrow \mathrm{ord}_{m}{\left(a^{-1}\right)}=\mathrm{ord}_{m}{\left(a\right)}

  • 1=a0,a,,aordm(a)11=a^0,a,\cdots,a^{\mathrm{ord}_{m}{\left(a\right)}-1}

  • adak(modm)dk(modordm(a))a^d\equiv a^k\left(\mod m\right)\Longleftrightarrow d\equiv k\left(\mod \mathrm{ord}_{m}{\left(a\right)}\right)

  • ordm(ad)=ordm(a)(d,ordm(a))\mathrm{ord}_{m}{\left(a^d\right)}=\frac{\mathrm{ord}_{m}{\left(a\right)}}{\left(d,\mathrm{ord}_{m}{\left(a\right)}\right)}

  • gg为模mm的原根,则gdg^d为模mm的原根(d,φ(m))=1\Longleftrightarrow \left(d,\varphi{\left(m\right)}\right)=1

  • kordm(a)k\mid \mathrm{ord}_{m}{\left(a\right)},则使得ordm(ad)=k,1dordm(a)\mathrm{ord}_{m}{\left(a^d\right)}=k,1\leq d\leq \mathrm{ord}_{m}{\left(a\right)}成立的正整数dd满足ordm(a)kd\frac{\mathrm{ord}_{m}{\left(a\right)}}{k}\mid d,且共有φ(k)\varphi{\left(k\right)}个这样的dd

  • mm有原根\Longrightarrowmmφ(φ(m))\varphi{\left(\varphi{\left(m\right)}\right)}个不同的原根

  • (ordm(a),ordm(b))=1ordm(ab)=ordm(a)ordm(b)\left(\mathrm{ord}_{m}{\left(a\right)},\mathrm{ord}_{m}{\left(b\right)}\right)=1\Longleftrightarrow \mathrm{ord}_{m}{\left(a\cdot b\right)}=\mathrm{ord}_{m}{\left(a\right)}\cdot \mathrm{ord}_{m}{\left(b\right)}

求指数

根据ad1(modm)ordm(a)da^d\equiv1\left(\mod m\right)\Longleftrightarrow\mathrm{ord}_{m}{\left(a\right)}\mid d,求出mm的因数,挨个验证

最后更新于