椭圆曲线加法
最后更新于
最后更新于
为,的特征不为时:
求逆运算
,不互逆
\left\{\begin{array}{**lr**} x_3=\lambda^2-x_1-x_2\\ y_3=\lambda\left(x_1-x_3\right)-y_1\\ \lambda=\left(y_2-y_1\right)/\left(x_2-x_1\right) \end{array} \right.
\left\{\begin{array}{**lr**} x_3=\lambda^2-2x_1\\ y_3=\lambda\left(x_1-x_3\right)-y_1\\ \lambda=\left(3x_1^2+a_4\right)/\left(2y_1\right) \end{array} \right.
为,为大于的素数,的特征不为时:
求逆运算
,不互逆
\left\{\begin{array}{**lr**} x_3=\lambda^2-x_1-x_2\left(\mod p\right)\\ y_3=\lambda\left(x_1-x_3\right)-y_1\left(\mod p\right)\\ \lambda=\left(y_2-y_1\right)\cdot{\left(x_2-x_1\right)}^{-1}\left(\mod p\right)\end{array} \right.
\left\{\begin{array}{**lr**} x_3=\lambda^2-2x_1\left(\mod p\right)\\ y_3=\lambda\left(x_1-x_3\right)-y_1\left(\mod p\right)\\ \lambda=\left(3x_1^2+a_4\right)\cdot{\left(2y_1\right)}^{-1}\left(\mod p\right)\end{array} \right.
上的阶为\#\left(E\left(F_p\right)\right)=p+1+\sum_\limits{x=0}^{p-1}{\left(\frac{x^3+a_4x+a_6}{p}\right)},括号为勒让德符号
当循环群的阶是足够大的素数时,这个循环群中的离散对数问题是困难的
\left\{\begin{array}{**lr**} x_3=\lambda^2+\lambda+x_1+x_2+a_2\\ y_3=\lambda\left(x_1+x_3\right)+x_3+y_1\\ \lambda=\left(y_2+y_1\right)/\left(x_2+x_1\right) \end{array} \right.
\left\{\begin{array}{**lr**} x_3=\lambda^2+\lambda+a_2\\ y_3=x_1^2+\left(\lambda+1\right)x_3\\ \lambda=\left(x_1^2+y_1\right)/\left(x_1\right) \end{array} \right.
为,的特征为时: 求逆运算
,不互逆