最后更新于4年前
这有帮助吗?
同态:f:G→G′,∀a,b∈G,f(ab)=f(a)f(b)f:G\rightarrow G^\prime,\forall a,b\in G,f\left(ab\right)=f\left(a\right)f\left(b\right)f:G→G′,∀a,b∈G,f(ab)=f(a)f(b)
单同态:fff为单射
满同态:fff为满射
同构:fff为双射,记作f:G≅G′f:G\cong G^\primef:G≅G′
自同态:G=G′G=G^\primeG=G′
像:f:X→Y,A⊆X,B⊆Y,Af:X\rightarrow Y,A\subseteq X,B\subseteq Y,Af:X→Y,A⊆X,B⊆Y,A在YYY中的像f[A]f\left[A\right]f[A]为{f(a)∣a∈A}\left\{f\left(a\right)\mid a\in A\right\}{f(a)∣a∈A}
逆像:BBB在XXX中的逆像f−1[B]f^{-1}{\left[B\right]}f−1[B]为{x∈X∣f(x)∈B}\left\{x\in X\mid f\left(x\right)\in B\right\}{x∈X∣f(x)∈B}
核/核子群:ker(f)=f−1[{e′}]={x∈G∣f(x)=e′}\mathrm{ker}{\left(f\right)}=f^{-1}{\left[\left\{e^\prime\right\}\right]}=\left\{x\in G\mid f\left(x\right)=e^\prime\right\}ker(f)=f−1[{e′}]={x∈G∣f(x)=e′}
同态映射f:Z→(Zp,+)f:Z\rightarrow \left(Z_p,+\right)f:Z→(Zp,+),ker(f)=<pZ>\ker\left(f\right)=<pZ>ker(f)=<pZ>
像子群:g(G)g\left(G\right)g(G)
核子群即由GGG中所有能通过fff映射成为G′G^\primeG′中的单位元的元素所组成的集合 像子群即GGG中所有元素通过fff映射后组成的集合
fff为GGG到G′G^\primeG′的同态(同构),ggg为G′G^\primeG′到G′′G^{\prime\prime}G′′的同态(同构)⟹f∘g\Longrightarrow f\circ g⟹f∘g为GGG到G′′G^{\prime\prime}G′′的同态(同构)
fff为GGG到G′G^\primeG′的同态
f(e)=e′f\left(e\right)=e^\primef(e)=e′
∀a∈G,f(a−1)=f−1(a)\forall a\in G,f\left(a^{-1}\right)=f^{-1}{\left(a\right)}∀a∈G,f(a−1)=f−1(a)
ker(f)≤G\mathrm{ker}{\left(f\right)}\leq Gker(f)≤G且fff为单同态⟺ker(f)={e}\Longleftrightarrow \mathrm{ker}{\left(f\right)}=\left\{e\right\}⟺ker(f)={e}
H′≤G′⟹f−1(H′)≤GH^\prime\leq G^\prime\Longrightarrow f^{-1}{\left(H^\prime\right)}\leq GH′≤G′⟹f−1(H′)≤G
自然同态
同态基本定理
STEP1: fff为同态映射
证明f:G→G′,∀a,b∈G,f(ab)=f(a)f(b)f:G\rightarrow G^\prime,\forall a,b\in G,f\left(ab\right)=f\left(a\right)f\left(b\right)f:G→G′,∀a,b∈G,f(ab)=f(a)f(b)
STEP2: ker(f)={e}\mathrm{ker}{\left(f\right)}=\left\{e\right\}ker(f)={e}或fff为单射
证明f(m)=f(n)⟹m=nf\left(m\right)=f\left(n\right)\Longrightarrow m=nf(m)=f(n)⟹m=n
STEP3: fff为满射
证明m=f−1(n),f(m)=nm=f^{-1}{\left(n\right)},f\left(m\right)=nm=f−1(n),f(m)=n
f:G→G′f:G\rightarrow G^\primef:G→G′同态⟹ker(f)\Longrightarrow \mathrm{ker}{\left(f\right)}⟹ker(f)为GGG的正规子群
NNN为GGG的正规子群S:G→G/H(a→aN)S:G\rightarrow G/H(a\rightarrow aN)S:G→G/H(a→aN)是核为NNN的同态,SSS为自然同态
f:G→G′f:G\rightarrow G^\primef:G→G′同态⟹∃\Longrightarrow \exists⟹∃唯一G/ker(f)→f(G)G/\mathrm{ker}{\left(f\right)}\rightarrow f\left(G\right)G/ker(f)→f(G)同构fˉ:aker(f)→f(a)f=i∘fˉ∘s\bar{f}:a\mathrm{ker}{\left(f\right)}\rightarrow f\left(a\right)f=i\circ \bar{f}\circ sfˉ:aker(f)→f(a)f=i∘fˉ∘s,其中sss为G→G/ker(f)G\rightarrow G/\mathrm{ker}{\left(f\right)}G→G/ker(f)自然同态,i:c→ci:c\rightarrow ci:c→c为f(G)→G′f\left(G\right)\rightarrow G^\primef(G)→G′恒等同态
s:G→G/Ns:G\rightarrow G/Ns:G→G/N同态⟹∀a∈G,f(a)=fˉ∘s(a)\Longrightarrow \forall a\in G,f\left(a\right)=\bar{f}\circ s\left(a\right)⟹∀a∈G,f(a)=fˉ∘s(a)