ppp为素数
ppp为奇素数,对整数aaa
(ap)≡ap−12(mod p)\left(\frac{a}{p}\right)\equiv a^{\frac{p-1}{2}}\left(\mod p\right)(pa)≡a2p−1(modp)
(1p)=1\left(\frac{1}{p}\right)=1(p1)=1
(−1p)=(−1)p−12\left(\frac{-1}{p}\right)={\left(-1\right)}^{\frac{p-1}{2}}(p−1)=(−1)2p−1
ppp为奇素数,则
(a+pp)=(ap)\left(\frac{a+p}{p}\right)=\left(\frac{a}{p}\right)(pa+p)=(pa)
(a⋅bp)=(ap)(bp)\left(\frac{a\cdot b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)(pa⋅b)=(pa)(pb)
设(a,p)=1\left(a,p\right)=1(a,p)=1,则(a2p)=1\left(\frac{a^2}{p}\right)=1(pa2)=1
ppp为奇素数,aaa为整数,(a,p)=1\left(a,p\right)=1(a,p)=1,整数a⋅1,a⋅2,⋯ ,a⋅p−12a\cdot1,a\cdot2,\cdots,a\cdot\frac{p-1}{2}a⋅1,a⋅2,⋯,a⋅2p−1中模ppp的最小正剩余大于p2\frac{p}{2}2p的个数是mmm,则(ap)=(−1)m\left(\frac{a}{p}\right)={\left(-1\right)}^m(pa)=(−1)m
最后更新于3年前