Lengendre符号

定义

pp为素数

欧拉判别法则

pp为奇素数,对整数aa

(ap)ap12(modp)\left(\frac{a}{p}\right)\equiv a^{\frac{p-1}{2}}\left(\mod p\right)

性质

  • (1p)=1\left(\frac{1}{p}\right)=1

  • (1p)=(1)p12\left(\frac{-1}{p}\right)={\left(-1\right)}^{\frac{p-1}{2}}

  • pp为奇素数,则

    • (a+pp)=(ap)\left(\frac{a+p}{p}\right)=\left(\frac{a}{p}\right)

    • (abp)=(ap)(bp)\left(\frac{a\cdot b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)

    • (a,p)=1\left(a,p\right)=1,则(a2p)=1\left(\frac{a^2}{p}\right)=1

高斯引理

pp为奇素数,aa为整数,(a,p)=1\left(a,p\right)=1,整数a1,a2,,ap12a\cdot1,a\cdot2,\cdots,a\cdot\frac{p-1}{2}中模pp的最小正剩余大于p2\frac{p}{2}的个数是mm,则(ap)=(1)m\left(\frac{a}{p}\right)={\left(-1\right)}^m

最后更新于