高次同余式解数
若m=m1⋯mk,则同余式f(x)≡0(modm)与同余式组
\left\{ \begin{array}{**lr**} f\left(x\right)\equiv 0\left(\mod m_1\right) &\\ \vdots &\\ f\left(x\right)\equiv 0\left(\mod m_k\right) \end{array} \right.
等价。若Ti为同余式f(x)≡0(modmi)的解数,则同余式解数T=T1⋯Tk
高次同余式求解
f(x)≡0(modpα)
STEP1: 验证有解
x=x1(modp)为f(x)≡0(modp)的一个解,(f′(x1),p)=1
STEP2: 递推
x≡xα(modpα)
\left\{ \begin{array}{**lr**} t_{i-1}\equiv-\frac{f\left(x_{i-1}\right)}{p^{i-1}}\cdot\left({f^\prime\left(x_1\right)}^{-1}\left(\mod p\right)\right)\left(\mod p\right) &\\ x_i\equiv x_{i-1}+t_{i-1}\cdot p^{i-1}\left(\mod p^i\right) &\\ i=2,\cdots,a \end{array} \right.